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Abstract
We obtain non-similar classes of realizations for real three- and four-
dimensional Lie algebras in the space of vector fields in three variables. This
is applied to the classification and integration of systems of two second-order
ordinary differential equations (ODEs) admitting four-dimensional symmetry
Lie algebras. Thus we obtain an analogue of Lie’s method of integrating
scalar second-order ODEs admitting two-dimensional symmetry Lie algebras
for systems of two second-order ODEs. Applications to physical problems are
presented.

PACS number: 0230H

1. Introduction

The theory of Lie groups and Lie algebras originated from Lie’s early works related to the
integration of scalar ordinary differential equations (ODEs) [1]. In the study of invertible
transformations leaving a given differential equation invariant, Lie noticed that those forming
a one-parameter group can be described equivalently by using the vector tangent to the orbits
of the group. He called this vector the symbol of the group and symmetry of the underlying
equation. He showed that the set of symmetries of a differential equation forms an infinitesimal
group (a Lie algebra in the modern terminology, see, e.g., [3, 4]), and that the integrability of
the equation depends upon the properties of this infinitesimal group. Namely, he showed
that a scalar nth-order ODE admitting an n-dimensional solvable Lie algebra of symmetries
is integrable by quadratures. Since two-dimensional Lie algebras are solvable, Lie gave
an algorithm for integrating second-order ODEs having two-dimensional Lie algebras of
symmetries. Furthermore, he explicitly classified, in the complex domain, scalar second-
order ODEs possessing symmetries. The classification in the real domain was given more
recently in Mahomed and Leach [5].

Since systems of two second-order ODEs occur frequently in applications (classical, fluid
and quantum mechanics, general relativity, etc), it is worth developing a classification scheme
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similar to Lie’s for such systems. Lie [2] gave the complete classification of complex primitive
Lie algebras in terms of vector fields in (1 + 2)-dimensional space: he obtained eight non-
similar classes. For complex imprimitive Lie algebras, he sketched in three steps the method
to follow and he implemented only the first two steps.

In this paper, we investigate realizations of real three- and four-dimensional Lie algebras
in terms of vector fields in (1 + 2)-dimensional space. Furthermore, we classify all systems of
two second-order ODEs admitting real four-dimensional symmetry Lie algebras and we show
how one can integrate the underlying equations. Finally, we provide applications of our results
to physical problems.

2. Realizations of three- and four-dimensional real Lie algebras in terms of vector fields
in (1 + 2)-dimensional space

When we calculate the symmetries of a given differential equation, we find the generators
explicitly in the form of vector fields (or first-order linear operators), and only afterwards do
we compute the commutators to get the structure constants of the particular Lie algebra we
have found. But we could also proceed backwards, that is, start from a given Lie algebra with a
set of structure constants and ask which vector fields in at most three variables satisfy the given
set of commutator relations with none of the vector fields vanishing. We thus ask for possible
realizations or representations of our Lie algebra. Two realizations of the same Lie algebra
will be considered equivalent or similar if there exists an invertible transformation mapping
one of the realizations to the other.

In this section we are concerned with finding all non-similar representations of three- and
four-dimensional real Lie algebras in (1+2)-dimensional space. We adopt the Mubarakzyanov
[8] classification scheme of real low-dimensional Lie algebras reported in Patera and Winternitz
[9] and we also exploit the enumeration of subalgebras of these Lie algebras given in the same
paper. We shall use L as a place-holder for relevant Lie algebra(s) La,b,R

i,j (the j th algebra
of dimension i with the superscripts a, b, if any, indicating parameters on which the algebra
depends; also superscripts R, if any, indicates the algebra realizations). Moreover, following
Lie, we use the shorthand notation

l = ∂

∂t
p = ∂

∂x
q = ∂

∂y
.

Finally, the elements of a basis of a given Lie algebra are named Xi , where i is lesser than or
equal to the dimension of the underlying real Lie algebra.

2.1. Realizations of three-dimensional real Lie algebras

We now focus attention on the realizations of real three-dimensional Lie algebras. For each
algebra we write down only the non-zero commutation relations.

L3,1 (the Abelian three-dimensional Lie algebra)

Let r = rank[X1, X2, X3]. Then we consider the following cases.

(i) r = 3. One can find coordinates in which

X1 = l X2 = p X3 = q.
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(ii) r = 2. There is a coordinate system such that

X1 = l X2 = p X3 = a(t, x, y)X1 + b(t, x, y)X2.

Since [X1, X3] = 0 and [X2, X3] = 0, a = a(y), b = b(y), renaming the variables, we obtain
the realization

X1 = p X2 = q X3 = b(t)p + a(t)q.

(iii) r = 1. There is a coordinate system in which

X1 = p X2 = a(t, x, y)p X3 = c(t, x, y)p.

Now [X1, X2] = 0 and [X1, X3] = 0 imply that a = a(t, y), b = b(t, y). Furthermore, make
the change of variables

t̄ = a(t, y) x̄ = x ȳ = b(t, y).

Thus

X1 = p̄ X2 = t̄ p̄ X3 = ȳp̄.

Dropping the bars, we obtain the representation

X1 = p X2 = tp X3 = yp.

L3,2: [X1, X2] = X2

By assuming the connectedness and then the non-connectedness of X1 and X2, we arrive at
the following cases.

(i) X1 = −yq, X2 = q. Let

X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)p.

Then [X1, X3] = 0 and [X2, X3] = 0 imply that a = a(t, x), b = b(t, x) and c = 0, i.e.
X3 = a(t, x)l + b(t, x)p. There exists a change of variables

t̄ = t̄ (t, x) x̄ = x̄(t, x) ȳ = y

in which

X1 = −ȳq̄ X2 = q̄ X3 = p̄.

Leaving out the bars, we obtain the realization

X1 = −yq X2 = q X3 = p.
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(ii) X1 = −xp − yq, X2 = q. The commutators [X1, X3] = 0 and [X2, X3] = 0 imply that
a = a(t), b = b(t)x, c = c(t)x, i.e.

X3 = a(t)l + b(t)xp + c(t)xq

If a(t) �= 0, make the change

t̄ =
∫

dt/a x̄ = α(t)x ȳ = β(t)y

where α and β are solutions of the equations

a(t)α′ + b(t)α = 0 a(t)β ′ + c(t)β = 0.

Omitting the bars, we obtain

X1 = −xp − yq X2 = cq X3 = l

where c is a non-zero constant. Then replace X2 by (1/c)X2. Thus we obtain the realization

X1 = −xp − yq X2 = q X3 = l.

If a = 0, we obtain the representation

X1 = −xp − yq X2 = q X3 = b(t)xp + c(t)xq

where (b(t), c(t)) �= (0, 0).

L3,3: [X2, X3] = X1 (Weyl’s algebra)

The vector spaces 〈X1, X2〉 and 〈X1, X3〉 are two-dimensional Abelian subalgebras of L3,3.
Since the operations

X2 −→ X3 X3 −→ −X2

do not affect the structure of the algebra, the following cases are relevant.

(i) X1 = l, X2 = p. Let X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then [X1, X3] =
0, [X2, X3] = 0 imply that

a = x + a(y) b = b(y) c = c(y).

If c = 0 and b′(y) �= 0, effect the change of variables

t̄ = t x̄ = x + a(y) ȳ = b(y).

Dropping the bars, we arrive at the realization

X1 = l X2 = p X3 = xl + yp.

If c = 0 and b = constant, make the transformation

t̄ = t x̄ = x + a(y) ȳ = y

and replace X3 by (X3 − constantX1). Then, dropping the bars, we obtain

X1 = l X2 = p X3 = xl.

If c �= 0, make the change of variables

t̄ = t + α(y) x̄ = x + β(y) y =
∫

dy/c

where α and β are solutions of the equations

c(y)α′(y) + a(y) − α(y) = 0 c(y)β ′(y) + b(y) = 0.

Without the bars we have

X1 = l X2 = p X3 = xl + q.
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(ii) X1 = p, X2 = tp. Let X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then [X1, X3] =
0, [X2, X3] = 0 yield

a = −1 b = b(t, y) c = c(t, y).

Perform the change of variables

t̄ = t x̄ = x + α(t, y) ȳ = β(t, y)

where

αt − c(t, y)αy − b(t, y) = 0 βt − c(t, y)βy = 0.

We find

X1 = p X2 = tp X3 = −l.

L3,4: [X1, X3] = X1, [X2, X3] = X1 + X2

The vector space 〈X1, X2〉 is the only Abelian subalgebra of L3,4. Whence the cases:

(i) X1 = l, X2 = p. Let X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then [X1, X3] = X1

and [X2, X3] = X1 + X2 imply that

a = t + x + a(y) b = x + b(y) c = c(y).

If c = 0, make the reduction using

t̄ = t + a(y) − b(y) x̄ = x + b(y).

Leaving out the bars, we obtain

X1 = l X2 = p X3 = (t + x)l + xp.

If c �= 0, invoke the change of variables

t̄ = t + α(y) x = x + β(y) y =
∫

dy/c

where α and β satisfy the following equations:

c(y)α′ − α − β + a(y) = 0 c(y)β ′ − α + b(y) = 0

we deduce

X1 = l X2 = p X3 = (t + x)l + xp + q.

(ii) X1 = p, X2 = tp. Let X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then [X1, X3] = X1

and [X2, X3] = X1 + X2 give

a = −1 b = x + b(t, y) c = c(t, y).

Effect the change

t̄ = t x̄ = x + α(t, y) y = β(t, y)

where α and β satisfy the equations

αt − c(t, y)αy + α − b(t, y) = 0 βt − c(t, y)βy = 0.

Suppressing the bars, we obtain

X1 = p X2 = tp X3 = −l + xp.
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L3,5: [X1, X3] = X1, [X2, X3] = X2

The vector space 〈X1, X2〉 is the only two-dimensional Abelian subalgebra of L3,5. Using the
same method as before, we obtain the following representations:

X1 = l X2 = p X3 = t l + xp

X1 = l X2 = p X3 = t l + xp + q

X1 = p X2 = tp X3 = xp

X1 = p X2 = tp X3 = xp + q.

La
3,6, a ∈ [−1, 1): [X1, X3] = X1, [X2, X3] = aX2

After the same kind of reasoning as before, we obtain the realizations:

X1 = l X2 = p X3 = t l + axp

X1 = l X2 = p X3 = t l + axp + q

X1 = p X2 = tp X3 = t (1 − a)l + xp.

La
3,7, a � 0: [X1, X3] = aX1 − X2, [X2, X3] = X1 + aX2

We obtain the following representations:

X1 = l X2 = p X3 = (at + x)l − (t − ax)p

X1 = l X2 = p X3 = (at + x)l − (t − ax)p + q

X1 = p X2 = tp X3 = −(t2 + 1)l + (a − t)xp.

L3,8: the vector space [X1, X2] = X1, [X2, X3] = X3, [X3, X1] = 2X1

〈X1, X2〉 is the only two-dimensional subalgebra of L3,8. By assuming the connectedness and
then the non-connectedness of X1 and X2, we arrive at the following cases:

(i) X1 = q, X2 = yq. Suppose X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then
[X2, X3] = X3 and [X3, X1] = 2X1 result in

a = 0 b = 0 c = −y2.

Whence the realization

X1 = q X2 = yq X3 = −y2q.

(ii) X1 = q, X2 = xp + yq. Let X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then
[X2, X3] = X3 and [X3, X1] = 2X1 imply that

a = a(t)x b = b(t)x2 − 2xy c = c(t)x2 − y2.

Hence the representation

X1 = q X2 = yq X3 = a(t)xl +
(
b(t)x2 − 2xy

)
p +

(
c(t)x2 − y2

)
q
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where a, b, c are arbitrary functions. By considering the cases a �= 0 and a = 0, we deduce
after suitable changes of variables, the following realizations:

X1 = l X2 = t l + xp X3 = −t2l − 2xtp + xq

X1 = l + p X2 = t l + xp X3 = −t2l − x2p

X1 = −tp X2 = 1
2 (−t l + xp) X3 = −xl.

L3,9: [X1, X2] = X3, [X3, X1] = X2, [X2, X3] = X1

Note that if X1, X2, X3 are connected, there is no real representation of L3,9. Hereafter, we
assume that X1, X2 and X3 are not connected. There is a change of variables in which X1 = l.
Now let

X2 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q

and

X3 = α(t, x, y)l + β(t, x, y)p + γ (t, x, y)q.

Then [X1, X2] = X3, [X1, X2] = X2, [X2, X3] = X1 give rise to

a = A1(x, y) cos t + A2(x, y) sin t α = A2(x, y) cos t − A1(x, y) sin t

b = B1(x, y) cos t + B2(x, y) sin t β = B2(x, y) cos t − B1(x, y) sin t

c = A1(x, y) cos t + A2(x, y) sin t γ = C2(x, y) cos t − C1(x, y) sin t

where Ai, Bi, Ci; i = 1, 2 satisfy the system

B1A2,x − B2A1,x + C1A2,y − C2A1,y = 1 + A2
1 + A2

2

B1B2,x − B2B1,x + C1B2,y − C2B1,y = A1B1 + A2B2

C1C2,y − C2C1,y + B1C2,y − B2C1,y = 1 + A1C1 + A2C2.

(1)

Consider the change

x̄ = x̄(x, y) ȳ = ȳ(x, y) t̄ = t + λ(x, y).

In this coordinate system,

X1 = l̄

X2 = (Ā1 cos t̄ + Ā2 sin t̄ )l̄ + (B̄1 cos t̄ + B̄2 sin t̄ )p̄ + (C̄1 cos t̄ + C̄2 sin t̄ )q̄

X3 = (Ā2 cos t̄ − Ā1 sin t̄ )l̄ + (B̄2 cos t̄ − B̄1 sin t̄ )p̄ + (C̄2 cos t̄ − C̄1 sin t̄ )q̄

where

Ā1 = A1 cos λ − A2 sin λ + λx(B1 cos λ − B2 sin λ + λy(C1 cos λ − C2 sin λ)

Ā2 = A1 sin λ + A2 cos λ + λx(B1 sin λ + B2 cos λ + λy(C1 sin λ + C2 cos λ)

B̄1 = x̄x(B1 cos λ − B2 sin λ) + x̄y(C1 cos λ − C2 sin λ)

B̄2 = x̄x(B1 sin λ + B2 cos λ) + x̄y(C1 sin λ + C2 cos λ)

C̄1 = ȳx(B1 cos λ − B2 sin λ) + ȳy(C1 cos λ − C2 sin λ)

C̄2 = ȳx(B1 sin λ + B2 cos λ) + ȳy(C1 sin λ + C2 cos λ).

Now we show that we can assume that B2 = C1 = 0.



2890 C Wafo Soh and F M Mahomed

If B1C2 − B2C1 �= 0, by choosing x̄ and ȳ as solutions of the following equations:

x̄x(B1 sin λ + B2 cos λ) + x̄y(C1 sin λ + C2 cos λ) = 0

ȳx(B1 cos λ − B2 sin λ) + ȳy(C1 cos λ − C2 sin λ) = 0

we have that B̄2 = 0 = C̄1.
If B1C2 − B2C1 = 0, then for (B1, B2) = (0, 0), we choose x̄ = x, ȳ = y and λ is a

solution of

C1 cos λ + C2 sin λ = 0.

Note that in this case (C1, C2) �= (0, 0) otherwise the operators would be connected and this
is excluded. Now if (B1, B2) �= (0, 0), we choose x̄ = x, λ a solution of

B1 sin λ + B2 cos λ = 0

and ȳ a solution of

ȳx(B1 cos λ − B2 sin λ) + ȳy(C1 cos λ − C2 sin λ) = 0.

Henceforth we assume that B2 = C1 = 0. Thus the system (1) reduces to

B1A2,x − C2A1,y = 1 + A2
1 + A2

2

−C2B1,y = A1B1

B1C2,y = A2C2.

If B1 �= 0, make the change of variables

t̄ = t + π/4 x̄ = x ȳ = ȳ(x, y)

where ȳ is a solution of B1ȳx + C2ȳy = 0. Hence C̄2 = 0. Thus we can assume that B1 = 0
or C2 = 0. Both cases lead to realizations equivalent to the following one:

X1 = l X2 = x cos t l − (1 + x2) sin tp X3 = −x sin t l − (1 + x2) cos tp.

Now perform the transformation

t̄ = tan t x̄ = x

cos t
ȳ = y.

Dropping the bars, we obtain the representation

X1 = (1 + t2)l + xtp X2 = xl − tp X3 = −xtl − (1 + x2)p.

It is worthwhile to note that the same realization was obtained in Mahomed and Leach [5],
where the authors were searching for representations in (1 + 1)-dimensional space. The results
obtained are summarized in table 1.

2.2. Realizations of four-dimensional real Lie algebras

According to the classification of Mubarakzyanov [8], there are 30 real four-dimensional
Lie algebras. As far as representation, and to some extent ODEs, are concerned, some of
these algebras (namely those depending on parameters) may be treated simultaneously. All
four-dimensional real Lie algebras contain three-dimensional subalgebras. Since we already
have represented real three-dimensional Lie algebras in the previous subsection, we can build
representations of four-dimensional Lie algebras on them. We shall not present details of
calculations for all the cases. Nevertheless, we shall explicitly work out representations for
few cases and all the representations will be summarized in table 2.
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L4,1: the four-dimensional Abelian Lie algebra

The algebra L4,1 contains L3,1. Since permutingX1, X2, X3 andX4 does not affect the structure
of L4,1, the following cases are to be distinguished.

(i) X1 = l, X2 = p,X3 = q. Let X4 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then
[Xi,X4] = 0, i = 1, 2, 3 imply that a = constant, b = constant, c = constant. This
contradicts the fact that X1, X2, X3 and X4 form a basis of L4,1.

(ii) X1 = p,X2 = q,X3 = f (t)p + g(t)q. The relations [X1, X4] = 0 and [X2, X4] = 0
imply that a = a(t), b = b(t), c = c(t). Now [X3, X4] = 0 implies that a(t)f ′(t) =
0, a(t)g′(t) = 0. If a �= 0 then f = constant and g = constant. However, this would imply
that X1, X2 and X3 are linearly dependent. Thus a = 0. Whence the realization

X1 = p X2 = q X3 = f (t)p + g(t)q X4 = b(t)p + c(t)q

where f ′(t)c′(t) − g′(t)b′(t) �= 0 to ensure that X1, X2, X3, X4 are linearly independent.

(iii)X1 = p,X2 = tp,X3 = yp. [Xi,X4] = 0, i = 1, 2, 3 imply thata = 0, b = (t, y), c =
0. Hence the realization

X1 = p X2 = tp X3 = yp X4 = b(t, y)p

where b �= constant × t + constant × y + constant.
The interested reader is referred to Wafo Soh and Mahomed [10] for another approach to

this case.

L4,2: [X1, X2] = X2

The algebra L4,2 contains L3,1 with basis {X1, X3, X4} or {X2, X3, X4}. Hence we must
consider the following cases.

(i) X1 = l, X3 = p,X4 = q. Let X2 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then
[X2, X3] = 0 = [X2, X4] and [X1, X2] = X2 imply that a = a0et , b = b0et , c = c0et , where
a0, b0, c0 are constants. Now perform the change of variables

t̄ = et x̄ = x ȳ = y.

Omitting the bars, we obtain

X1 = t l X2 = a0t
2l + b0t + c0tq X3 = p X4 = q.

This realization may be simplified further by considering the cases (b0, c0) = 0, 0 and
(b0, c0) �= 0, 0.

(ii) X1 = p,X3 = q,X4 = f (t)p + g(t)q. Here [X2, X3] = 0 and [X1, X2] = X2 imply
that a = a(t) ex, b = b(t) ex, c = c(t) ex . Also [X2, X4] = 0 gives rise to

a(t)f (t) = 0

a(t)f ′(t) − f (t)b(t) = 0

a(t)g′(t) − f (t)c(t) = 0.
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If a = 0, then f = 0. If a �= 0 then f = 0 and g = constant. But this is inconsistent with the
fact that X3 and X4 are independent. Hence

X1 = p X2 = b(t) exp + c(t) exq X3 = q X4 = g(t)q

where g′(t) �= 0 since X3 and X4 must be linearly independent. Now, perform the
transformation

t̄ = g(t) x̄ = x ȳ = y.

Therefore, we deduce the realization

X1 = p X2 = η(t) exp + µ(t) exq X3 = q X4 = tq.

(iii) X1 = p,X2 = tp,X4 = yp. This case leads to an inconsistency.

(iv) X2 = l, X3 = p,X4 = q. Let X4 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then
[X1, X3] = 0 = [X1, X4] imply that a = a(t), b = b(t), c = c(t). Now [X1, X2] = X2

implies a = −t + a0, b = b0, c = c0. Replacing X1 by X1 − a0X2 − b0X3 − c0X4, we obtain
the realization

X1 = −t l X2 = l X3 = p X4 = q.

(v) X2 = p,X3 = q,X4 = f (t)p + g(t)q. [X1, X3] = 0 and [X1, X2] imply that
a = a(t), b = −x + b(t), c = c(t). The relation [X1, X4] = 0 constrains a, f, g to

a(t)f ′(t) + f (t) = 0

a(t)g′(t) = 0.

If a = 0 then f = 0. Make the change of variables

t̄ = t x̄ = −x + b(t) ȳ = y.

Omitting the bars, we obtain the realization

X1 = −xp + µ(t)q X2 = p X3 = q X4 = tq.

If a �= 0, a suitable change of variables (t̄ = ∫
dt/a, x̄ = x, ȳ = y) leads to a = 1. Hence

f = f0e−t , g = g0, where f0 �= 0. Perform the change

t̄ = e−t x̄ = x + α(t) ȳ = y + β(t)

where α satisfies α′(t) + α(t) + b(t) = 0 and β satisfies β ′(t) + c(t) = 0. Then replace X4 by
(X4 − g0X3)/f0. Dropping the bars, we find

X1 = −t l − xp X2 = p X3 = q X4 = tp.

(vi)X2 = p,X3 = tp,X4 = yp. We have that [X1, X3] = 0 = [X1, X4] and [X1, X2] = X2

imply that a = −t, b = −x + b(t, y), c = −y. Now, invoke the transformation

t̄ = t x̄ = x + α(t, y) ȳ = y

where α satisfies −tαt − yαy + α + b = 0. Dropping the bars, we obtain the realization

X1 = −t l − xp − yq X2 = p X3 = tp X4 = yp.
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L4,3: [X1, X2] = X2, [X3, X4] = X4

Permuting the pairs (X1, X2) and (X3, X4) does not affect the structure of L4,3. Whence the
following cases:

(i) X1 = −yq,X2 = q. Let X3 = a(t, x, y)l + b(t, x, y)p + c(t, x, y)q. Then [X2, X3] = 0
and [X1, X3] imply that X1 = a(t, x)l + b(t, x)p. Similarly, X4 = ξ(t, x)l + η(t, x)p. Thus
X3 and X4 depend only on t and x. Since [X3, X4] = X4, we deduce that X3 = −xp and
X4 = p or X3 = −t l − xp and X4 = p. Whence the representations

X1 = −yq X3 = q X3 = −xp X4 = p

and

X1 = −yq X2 = q X3 = −t l − xp X4 = p.

(ii) X1 = −xp − yq,X2 = q. Here [X1, X3] = 0 and [X2, X3] = 0 imply that
a = a(t), b = b(t)x, c = c(t)x. Hence X3 = a(t)l + b(t)xp + c(t)xq. Similarly,
X4 = ξ(t)l + η(t)xp + µ(t)xq and [X3, X4] = X4 imply

aξ ′ − a′ξ = ξ

aη′ − a′ξ = η

aµ′ + bµ − ξc′ − ηc = µ.

If a = 0, then ξ = 0 and η = 0. Therefore, X3 = xp + c(t)xq, X4 = µ(t)xq. Call on the
transformation

t̄ = t x̄ = µ(t)x ȳ = y − c(t)x.

We find

X1 = −xp − yq X2 = q X3 = xp X4 = xq.

If a �= 0, then perform the change of variables

t̄ =
∫

dt/a x̄ = α(t)x ȳ = y + β(t)x

where α satisfies aα′ + bα = 0 and β satisfies aβ + bβ + c = 0. We may assume that a = 1
and b = 0 = c. Hence ξ = ξ0et , η = η0et , µ = µ0et . Whence the realization

X1 = −xp − yq X2 = q X3 = l X4 = et (ξ0l + η0xp + µ0xq)

where ξ0, η0, µ0 are constants. This realization can be further simplified by considering the
cases (η0, µ0) = 0, 0 and (η0, µ0) �= 0, 0.

We proceed in the same way as above for the remaining four-dimensional Lie algebras.
The results are summarized in table 2.
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3. Canonical forms and reduction of systems of two second-order ODEs having
four-dimensional symmetry Lie algebras

The Lie algorithm for calculating the symmetry vectors of a given differential equation is
well known (see, e.g., [6, 7, 17]). Now assume that the symmetry vectors (of some unknown
equation) are given without recourse to that equation. Can one recover the equation? This
question can be understood as a sort of inverse problem in symmetry analysis and is sometimes
referred to as group-theoretic modelling.

In this section we aim at classifying systems of two second-order ODEs admitting exactly
or maximally real four-dimensional symmetry Lie algebras. We also discuss the integrability
of such systems.

3.1. Canonical forms

Here we only present the details of calculations for one case. The other cases can be dealt with
in a similar manner. Let us begin with the following theorem which was proved in Wafo Soh
and Mahomed [10].

Theorem 1. A system of two second-order ODEs is linearizable via a point transformation if
and only if it admits L4,1 or L1,1

4,15.

Consider the algebra L1
4,2:

X1 = −t
∂

∂t
− x

∂

∂x
− y

∂

∂y
X2 = ∂

∂x
X3 = t

∂

∂x
X4 = y

∂

∂x
.

Let us also investigate a system admitting L1
4,2:

ẍ = f (t, x, y, ẋ, ẏ)

ÿ = g(t, x, y, ẋ, ẏ).
(2)

Following the Lie algorithm, (2) is invariant under X2 if and only if

X
[2]
2 (ẍ − f )|(2) = 0 X

[2]
2 (ÿ − g)|(2) = 0

i.e.

fx = 0, gx = 0.

Hence f = f (t, y, ẋ, ẏ), g = g(t, y, ẋ, ẏ) and equation (2) becomes

ẍ = f (t, y, ẋ, ẏ)

ÿ = g(t, y, ẋ, ẏ).
(3)

Equation (3) is invariant under X3 if and only if

X
[2]
3 (ẍ − f )|(3) = 0 X

[2]
3 (ÿ − g)|(3) = 0

and

fẋ = 0 gẋ = 0.

Hence f = f (t, y, ẏ), g = g(t, y, ẏ) and equation (3) becomes

ẍ = f (t, y, ẏ)

ÿ = g(t, y, ẏ).
(4)
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In like manner, invariance under X4 leads to g = 0 and we obtain the system

ẍ = f (t, y, ẏ)

ÿ = 0.
(5)

Finally, invariance under X1 requires that

f = −ft − yfy

i.e. f = t−1F(y/t, ẏ). Thus the system which admits L1
4,2 is

ẍ = t−1f (y/t, ẏ)

ÿ = 0.
(6)

Other cases are treated similarly and the results are listed in table 3. Note that certain algebras
or realizations do not appear in this table, the reason for this being simply that they are either
not admitted by any equation (L4,10 for instance) or the equations which admit them have more
than four symmetries (L8

4,19, L0,1
4,20 for example).

3.2. Integrability

Assume that we want to integrate or reduce a system of two second-order ODEs admitting a
four-dimensional symmetry Lie algebra. How does the knowledge of the symmetries help us
in the solution of this problem? If we assume that the four-dimensional Lie algebra in question
is solvable, then we can try successive reduction as in the case of scalar equations. However,
we immediately face a major problem: a vector field in three variables has a basis of first-order
invariants formed by four elements. Hence in performing a reduction in the order there will be
ambiguity in the choice of the new variables as invariants. Indeed, there are four possibilities.
This fact emphasizes a difference between scalar and systems of ODEs. In order to avoid the
situation we have mentioned, we proceed as follows. First, we reduce the system to one of the
canonical forms given in table 3. If we can solve the system in its canonical form, we proceed
backwards to recover the solution of the initial system. Note that the transformation bringing
the system to its canonical form is simply the transformation which maps its symmetry Lie
algebra to one of the realizations listed in table 2. Thus the problem of integrating systems
admitting four-dimensional Lie algebras is reduced to that of integrating canonical forms. The
following result can be stated by analysing the canonical forms obtained.

Proposition 1. If a system of two ODEs admits maximally a four-dimensional symmetry Lie
algebra, then this algebra has one or two functionally independent first-order differential
invariants. Furthermore, the underlying equation, in terms of invariants, can either be
integrated by quadratures or its integration depends on that of a first-order scalar ODE.

As illustration, we deal with two examples. Consider, for instance, the system

ẍ = ẋ2f (ẋ/ẏ) ÿ = ẋ2g(ẋ/ẏ) (7)

which admits L2
4,2 with basis

X1 = −t l X2 = l X3 = p X4 = q.

Note that L1
3,1 = 〈X2, X3, X4〉 is a subalgebra of L2

4,2. The first-order differential invariants
of L1

3,1 are

u = ẋ v = ẏ.
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In the variables t, u, v, the system becomes

u̇ = u2f (u/v) v̇ = u2g(u/v). (8)

This system inherits the symmetries

X1 = −t
∂

∂t
+ u

∂

∂u
+ v

∂

∂v
X2 = ∂

∂t
.

Also note that
du

dv
= f (u/v)

g(u/v)

and u/v are invariants of X1. This suggests the change of variable w = u/v:

dw

dv
= 1

v

(
f (w)

g(w)
− w

)
.

Finally, we have reduced the initial system to

dv

dt
= v2w2g(w)

dw

dv
= 1

v

(
f (w)

g(w)
− w

)
.

(9)

This system is obviously solvable by quadratures. This example should not mislead one into
believing that any system admitting a four-dimensional Lie algebra is solvable by quadratures.
Let us next investigate a case where the integration of the system depends on that of a first-order
scalar ODE. Consider the system

ẍ = xf (t, ẋ/x) (10a)

ÿ = xẏf (t, ẋ/x) (10b)

which admits L2
4,3. In (10a), make the change of variable

u = ẋ/x.

It becomes

u̇ = f (t, u) − u2. (11)

The integration of (10) obviously depends on that of (11).

4. Applications

First, we present examples from applications of systems of two second-order ODEs that admit
point symmetry algebras. Next, we give an application in relativity, i.e. how realizations of
vector fields in three variables are useful in the classification of group of motions.

1. The Hénon–Heiles problem has been posed as a model for the motion of a galactic cluster
and has the Hamiltonian [11]

H = 1
2 (p

2
1 + p2

2 + x2 + y2) + x2y − 1
3y

2

(p1 = ẋ, p2 = ẏ). The Newtonian equations of motion are

ẍ + x + 2xy = 0

ÿ + y + x2 − 2
3y = 0.

This system only has time-translation symmetry ∂/∂t [11]. It has a further first integral
besides the energy integral [11].
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2. The Newtonian system [12]

ẍ + ∂V/∂x = 0 ÿ + ∂V/∂y = 0

with potential V = λ1 ln x + λ2 ln y, λi constants, has the two-dimensional non-Abelian
Lie algebra generated by

X1 = ∂

∂t
X2 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y

and it is not in general completely integrable.
3. (a) The classical Kepler problem in reduced Cartesian coordinates is described by the

vector equation of motion

r̈ +
µ

r3
r = 0

whereµ is a positive constant. As the orbits lie in a plane, in terms of polar coordinates
the equation of motion can be split up into its radial and angular components as

r̈ − rθ̇2 + µr−2 = 0

rθ̈ + 2ṙ θ̇ = 0.

It is well known (see, e.g., [13]) that this system has the symmetries

X1 = ∂

∂t
X2 = ∂

∂θ
X3 = t

∂

∂t
+

2

3
r
∂

∂r
.

These symmetries correspond to the constants of the motion: energy, angular
momentum and the Laplace–Runge–Lenz vector [13]. The Kepler problem is
completely integrable.

(b) The generalized Ermakov system in two dimensions (see, e.g., [14])

ẍ = 1

x3
f

(
y

x

)
ÿ = 1

y3
g

(
y

x

)

where f and g are arbitrary functions of their arguments, has three symmetries

X1 = ∂

∂t
X2 = 2t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
X3 = t2 ∂

∂t
+ t

(
x
∂

∂x
+ y

∂

∂y

)

which constitute the symmetry algebra sl(3, R) [14]. Furthermore, the Hamiltonian
structure and integrability are discussed in [14].

4. The two-dimensional central force problem

r̈ +

(
µ

r4
− ε

)
r = 0 µ, ε > 0

in terms of polar coordinates is

r̈ − rθ̇2 +
µ

r3
− εr = 0 µ, ε > 0

rθ̈ + 2ṙ θ̇ = 0.

This system has the symmetries [15]

X1 = ∂

∂t
X2 = ∂

∂θ
X3,4 = exp(±2t

√
ε)

(
ε−1/2 ∂

∂t
± r

∂

∂r

)

where the + and − in ± refer to X3 and X4, respectively. The integrability is discussed
in [15].
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In addition to the above examples, systems of two second-order ODEs arise in the
symmetry reduction of systems of partial differential equations (see, for example, [6, 7]).

Notwithstanding, the realizations obtained in this paper have important applications in the
classification of group of motions: given a metric g, a vector X is a Killing vector if the Lie
derivative of g is zero, namely

LXg = 0. (12)

The Killing vectors of a non-degenerate metric form a Lie algebra. So if one knows a priori a
realization of a given Lie algebra, for example a four-dimensional Lie algebra, one can invoke
(12) to obtain the corresponding metric. Petrov [16] utilized this approach in the classification
of gravitational fields admitting simply transitive and intransitive four-dimensional group of
motions. For example [16], to the realization

X1 = ∂

∂x1
X2 = ∂

∂x3
X3 = ∂

∂x1
+ x3 ∂

∂x3
X4 = ∂

∂x1
+ x2 ∂

∂x2

corresponds the metric

ds2 = 2 dx1 dx4 + 2α(x4) exp(−x1) dx2 dx3

where α is an arbitrary function.

5. Conclusion

We have obtained non-similar realizations of three- and four-dimensional real Lie algebras
in (1 + 2)-dimensional space. This has been applied to the classification of all systems of
two second-order ODEs admitting four-dimensional symmetry Lie algebras. Moreover, we
have shown via examples how this classification can be used for integrating systems of two
second-order ODEs admitting four-dimensional symmetry Lie algebras. Furthermore, we have
presented examples from applications of systems of two second-order ODEs that admit point
symmetry algebra as well as, in relativity, how realizations of vector fields in three variables
are utilized in the classification of group of motions. Note that the classification of systems
with five symmetries can be achieved by combining our results with the following theorem.

Theorem 2 (Egorov’s theorem, see [16]). Every five-dimensional real Lie algebra contains
a four-dimensional real subalgebra.

A question that needs attention is the study of symmetry breaking for systems of two
second-order ODEs: it is well known (see [5]) that a scalar second-order ODE can admit
one of 0, 1, 2, 3 or 8 point symmetries. A system of two second-order linear ODEs admits
5, 6, 7, 8 or 15 point symmetries [18]. We conjecture that a system of two second-order ODEs
can admit 0, 1, 2, 3, 4, 5, 6, 7, 8 or 15 point symmetries. We will closely pursue this conjecture
in another paper.

We have presented physical applications of our results.

6. Summary of results in tables

These are given in tables 1–3. A few important remarks are now in order.

(i) For the functions occurring in table 3, the omitted arguments are just the previous ones.
(ii) The canonical forms in table 3 are not necessarily the simplest ones. There may be changes

of variables casting them in simpler forms.
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(iii) The realization L7
4,2 gives rise to Riccati equations solvable by quadratures.

(iv) Some systems appearing in table 3 are uncoupled. This fact gives insight into uncoupling
systems of two second-order ODEs possessing four-dimensional Lie algebras.

Table 1. Realizations of three-dimensional real Lie algebras in (1 + 2)-space. l = ∂/∂t, p =
∂/∂x, q = ∂/∂y; f, g, h are arbitrary functions.

Algebras Non-zero brackets Types Realizations

L1
3,1 X1 = l, X2 = p, X3 = q

L3,1 L2
3,1 X1 = p, X2 = q, X3 = f (t)p + g(t)q

L3
3,1 X1 = p, X2 = tp, X3 = yp

L1
3,2 X1 = −yq, X2 = q, X3 = p

L3,2 [X1, X2] = X2 L2
3,2 X1 = −xp − yq, X2 = q, X3 = l

L3
3,2 X1 = −xp − yq, X2 = q, X3 = f (t)xp + g(t)xq

L1
3,3 X1 = l, X2 = p, X3 = xl

L3,3 [X2, X3] = X1 L2
3,3 X1 = l, X2 = p, X3 = xl + yp

L3
3,3 X1 = l, X2 = p, xl + q

L4
3,3 X1 = p, X2 = tp, X3 = −l

L1
3,4 X1 = l, X2 = p, X3 = (t + x)l + xp

L3,4 [X1, X3] = X1 L2
3,4 X1 = l, X2 = p, X3 = (t + x)l + xp + q

[X2, X3] = X1 + X2 L3
3,4 X1 = p, X2 = tp, X3 = −l + xp

L1
3,5 X1 = l, X2 = p, X3 = t l + xp

L3,5 [X1, X3] = X1 L2
3,5 X1 = l, X2 = p, X3 = t l + xp + q

[X2, X3] = X2 L3
3,5 X1 = p, X2 = tp, X3 = xp

L4
3,5 X1 = p, X2 = tp, X3 = xp + q

La,1
3,6 X1 = l, X2 = p, X3 = t l + axp

La
3,6, a ∈ [−1, 1) [X1, X3] = X1 La,2

3,6 X1 = l, X2 = p, X3 = t l + axp + q

[X2, X3] = aX2 La,3
3,6 X1 = p, X2 = tp, X3 = (1 − a)tl + xp

La,1
3,7 X1 = l, X2 = p,

X3 = (at + x)l − (t − ax)p

La
3,7, a � 0 [X1, X3] = aX1 − X2 La,2

3,7 X1 = l, X2 = p

[X2, X3] = X1 + aX2 X3 = (at + x)l − (t − ax)p + q

La,3
3,7 X1 = p, X2 = tp

X3 = −(t2 + 1)l + (a − t)xp

[X1, X2] = X1 L1
3,8 X1 = l, X2 = t l, X3 = −t2l

L3,8 [X2, X3] = X3 L2
3,8 X1 = l, X2 = t l + xp,

[X3, X1] = 2X1 X3 = −t2l − 2xtp + xq

L3
3,8 X1 = l + p,X2 = t l + xp,

X3 = −t2l − x2p

L4
3,8 X1 = −tp,X2 = 1

2 (−t l + xp),

X3 = −xl

[X1, X2] = X3

L3,9 [X3, X1] = X2 L1
3,9 X1 = (1 + t2)l + xtp, X2 = xl − tp

[X2, X3] = X1 X3 = −xtl − (1 + x2)p
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Table 2. Realizations of four-dimensional real Lie algebras. l = ∂/∂t, p = ∂/∂x, q =
∂/∂y; a, . . . , d, are contants, f, g and h are arbitrary functions.

Algebras Non-zero brackets Types Realizations

L1
4,1 X1 = p,X2 = q,X3 = f (t)p + g(t)q,

X4 = h(t)p + k(t)q

L4,1 L2
4,1 X1 = p,X2 = tp,X3 = yp,X4 = f (t, y)p

L1
4,2 X1 = −t l − xp − yq,X2 = p,X3 = tp,X4 = yp

L2
4,2 X1 = −t l, X2 = l, X3 = p,X4 = q

L3
4,2 X1 = t l, X2 = tp,X3 = t l + xp,X4 = q

L4,2 [X1, X2] = X2 L4
4,2 X1 = t l, X2 = tp,X3 = p,X4 = q

L5
4,2 X1 = −t l − xp,X2 = p,X3 = q,X4 = tp

L6
4,2 X1 = −xp + f (t)q,X2 = p,X3 = q,X4 = tq

L7
4,2 X1 = p,X2 = f (t) exp + g(t) exq, X3 = q,X4 = tq

L1
4,3 X1 = −yq,X2 = q,X3 = −t l − xp,X4 = p

L2
4,3 X1 = −xp − yq,X2 = q,X3 = xp,X4 = xq

L4,3 [X1, X2] = X2 L3
4,3 X1 = −xp − yq,X2 = q,X3 = −t l, X4 = −l

[X3, X4] = X4 L4
4,3 X1 = −t l − xp − yq, X2 = q,X3 = t l, X4 = tq

L5
4,3 X1 = xp,X2 = xq,X3 = −t l, X4 = l

L6
4,3 X1 = t l + xp − yq,X2 = q,X3 = t l, X4 = tp

L7
4,3 X1 = −p − yq,X2 = q,X3 = t l, X4 = tp

L8
4,3 X1 = −yq,X2 = q,X3 = −xp,X4 = p

L1
4,4 X1 = p,X2 = q,X3 = yp,X4 = tp

L2
4,4 X1 = l, X2 = p,X3 = xl,X4 = q

L4,4 [X2, X3] = X1 L3
4,4 X1 = p,X2 = q,X3 = l + yp,X4 = tp

L4
4,4 X1 = p,X2 = q,X3 = yp + f (t)q,X4 = tp

L1
4,5 X1 = p,X2 = tp,X3 = −l + xp + yq,X4 = yp

L4,5 [X1, X3] = X1 L2
4,5 X1 = p,X2 = q

X3 = t l + (x + y)p + yq,X4 = tp

[X2, X3] = X1 + X2 L3
4,5 X1 = p, X2 = tp + et q, X3 = −l + xp, X4 = q

L4
4,5 X1 = l, X2 = p,X3 = (t + x)l + xp,X4 = q

[X1, X3] = X1 La,1
4,6 X1 = p, X2 = tp,

X3 = (1 − a)tl + xp + yq, X4 = yp

La
4,6 [X2, X3] = aX2 La,2

4,6 X1 = p,X2 = q,

X3 = t l + xp + ayq,X4 = tp

0 < |a| � 1 La,3
4,6 X1 = p,X2 = q,

X3 = atl + xp + ayq, X4 = tq

La,4
4,6 X1 = l, X2 = p,X3 = t l + axp, X4 = q

La,5
4,6 X1 = p − q

t
, X2 = q

ta
,X3 = t l + xp,X4 = tp

[X1, X3] = −X2 L1
4,7 X1 = p,X2 = tp,X3 = −(t + 1)l − xp − yq,

X4 = yp

L4,7 [X2, X3] = X1 L2
4,7 X1 = l, X2 = p,X3 = xl − tp,X4 = q

L3
4,7 X1 = p,X2 = q,X3 = l + yp − xq

X4 = cos t, p − sin t, q
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Table 2. Continued.

Algebras Non-zero brackets Types Realizations

[X1, X3] = aX1 − X2 La,1
4,8 X1 = l, X2 = p,

X3 = (at + x)l − (ax − t)p, X4 = q

La
4,8 [X2, X3] = X1 + aX2 La,2

4,8 X1 = p,X2 = q, X3 = l + (ax + y)p + (ay − x)q

a > 0 X4 = p cos t − q(sin t + a cos t)

L1
4,9 X1 = l, X2 = t l + xp,

X3 = −t2l − 2xtp + xq,X4 = q

[X1, X2] = X1 L2
4,9 X1 = l + p,X2 = t l + xp,

X3 = −t2l − x2p,X4 = q

L4,9 [X2, X3] = X3 L3
4,9 X1 = −tp,X2 = 1

2
(−t l + xp),

X3 = −xl,X4 = q

[X3, X1] = 2X2 L4
4,9 X1 = l, X2 = t l, X3 = −t2l, X4 = p

[X1, X2] = X3

L4,10 [X3, X1] = X2 L1
4,10 X1 = (1 + t2)l + txp,X2 = xl − tp,

[X2, X3] = X1 X3 = −txl − (1 + x2)p,X4 = q

L1
4,11 X1 = p,X2 = tp,X3 = yp,X4 = −l − tq

L4,11 [X2, X4] = X1 L2
4,11 X1 = p,X2 = q,X3 = −t2

2
p − tq,X4 = l + yp

[X3, X4] = X2 L3
4,11 X1 = q,X2 = p,X3 = l, X4 = tp + xq

[X1, X4] = aX1 La,1
4,12 X1 = p,X2 = tp,

X3 = yp,X4 = (a − 1)tl + axp + ((a − 1)y − t)q

La
4,12 [X2, X4] = X2 La,2

4,12 X1 = p, X2 = q,X3 = −tq,X4 = l + axp + yq

a �= 0 [X3, X4] = X2 + X3 La,3
4,12 X1 = l, X2 = p,X3 = q,X4 = atl + (x + y)p + yq

La,4
4,12 X1 = p,X2 = q,X3 = e(a−1)t p − tq,

X4 = l + axp + yq

L1
4,13 X1 = p,X2 = tp,X3 = yp,

X4 = t l + xp + (y − t)q

L4,13 [X1, X4] = X1 L2
4,13 X1 = l, X2 = p, X3 = q,X4 = t l + yp

[X3, X4] = X2 L3
4,13 X1 = p,X2 = q,X3 = aet p − tq,X4 = l + xp

[X1, X4] = X1 L1
4,14 X1 = p,X2 = tp,X3 = yp,

X4 = −l + xp − tq

L4,14 [X2, X4] = X1 + X2 L2
4,14 X1 = q,X2 = p,X3 = l,

X4 = t l + (t + x)p + (x + y)q

[X3, X4] = X2 + X3 L3
4,14 X1 = p,X2 = q,

X3 = − t2

2
p − tq,X4 = l + (x + y)p + yq

[X1, X4] = X1 La,b,1
4,15 X1 = p, X2 = tp,

X3 = yp, X4 = (1 − a)tl + xp + (1 − b)yq

La,b
4,15 [X2, X4] = aX2 La,b,2

4,15 X1 = l, X2 = p

−1 � a < b < 1 X3 = q, X4 = t l + axp + byq

ab �= 0 [X3, X4] = bX3 La,b,3
4,15 X1 = p,X2 = q,

X3 = tp,X4 = (1 − b)tl + xp + ayq

La,b,4
4,15 X1 = p,X2 = q,

X3 = tq,X4 = (a − b)tl + xp + ayq

La,b,5
4,15 X1 = p,X2 = q,

X3 = e(1−b)tp + e(a−b)t q,X4 = l + xp + ayq
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Table 2. Continued.

Algebras Non-zero brackets Types Realizations

[X1, X4] = X1 La,a,1
4,15 X1 = p, X2 = tp,

X3 = yp, X4 = (1 − a)tl + xp + (1 − a)yq

La,a
4,15 [X2, X4] = aX2 La,a,2

4,15 X1 = l, X2 = p

−1 � a < 1 X3 = q, X4 = t l + axp + ayq

a �= 0 [X3, X4] = aX3 La,a,3
4,15 X1 = p,X2 = q,

X3 = tp,X4 = (1 − a)tl + xp + ayq

La,a,4
4,15 X1 = p,X2 = q,X3 = tq,X4 = xp + ayq

[X1, X4] = X1 La,1,1
4,15 X1 = p, X2 = tp, X3 = yp,

X4 = (1 − a)tl + xp

La,1
4,15 [X2, X4] = aX2 La,1,2

4,15 X1 = l, X2 = p

−1 � a < 1 X3 = q, X4 = t l + axp + yq

a �= 0 [X3, X4] = X3 La,1,3
4,15 X1 = p,X2 = qX3 = tp,X4 = xp + ayq

La,1,4
4,15 X1 = p,X2 = q,X3 = tq,

X4 = (a − 1)tl + xp + ayq

[X1, X4] = X1 L1
4,16 X1 = l, X2 = p,X3 = q,X4 = t l + xp + yq

L4,16 [X2, X4] = X2 L2
4,16 X1 = p,X2 = tp,X3 = yp,X4 = xp

[X3, X4] = X3 L3
4,16 X1 = p,X2 = q,X3 = f (t)p + g(t)q,

X4 = xp + yq

[X1, X4] = aX1 La,b,1
4,17 X1 = p,X2 = tp, X3 = yp,

X4 = ((a − b)t + y)l + axp + ((a − b)y − t)q

La,b
4,17 [X2, X4] = bX2 − X3 La,b,2

4,17 X1 = q,X2 = p,X3 = l

a �= 0, b � 0 X4 = (bt − x)l + (bx + t)p + ayq

[X3, X4] = X2 + bX3 La,b,3
4,17 X1 = p,X2 = q, X3 = c

e(a−b)t

cos t
p − tan tq,

X4 = l +

(
ax − cy

e(a−b)t

cos t

)
p + (b + tan t)yq

[X1, X4] = 2X1 L1
4,18 X1 = 2p,X2 = 2tp,X3 = −l,

X1 = t l + (2x − t2)p

[X2, X4] = X2 L2
4,18 X1 = 2p,X2 = 2tp,X3 = −l,

X4 = t l + (2x − t2)p + q

L4,18 [X3, X4] = X2 + X3 L3
4,18 X1 = 2q, X2 = p,X3 = l + 2xq,

X4 = t l + (t + x)p + (2y + t2)q

[X2, X3] = X1 L4
4,18 X1 = q,X2 = p,X3 = −tp + xq,

X4 = l + xp + 2yq

L1
4,19 X1 = q,X2 = p,X3 = xq,X4 = xp + tq

L2
4,19 X1 = p,X2 = tp,X3 = −l, X4 = −t l

[X2, X3] = X1 L3
4,19 X1 = p,X2 = tp,X3 = −l, X4 = −t l + yp

L4,19 [X2, X4] = X2 L4
4,19 X1 = p,X2 = tp,X3 = −l, X4 = −t l + q

[X3, X4] = −X3 L5
4,19 X1 = q,X2 = p,X3 = xq, X4 = 2t l + xp

[X3, X4] = −X3 L6
4,19 X1 = q,X2 = p,X3 = tp + xq, X4 = 2t l + xp

L7
4,19 X1 = q,X2 = p,X3 = l + xq,X4 = −t l + xp

L8
4,19 X1 = q,X2 = p,X3 = xq,X4 = xp
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Table 2. Continued.

Algebras Non-zero brackets Types Realizations

Lb,1
4,20 X1 = q,X2 = p,X3 = xq,X4 = xp + (1 + b)yq

[X2, X3] = X1 Lb,2
4,20 X1 = p,X2 = tp,X3 = −l, X4 = btl + (1 + b)xp

Lb
4,20 [X1, X4] = (1 + b)X1 Lb,3

4,20 X1 = p,X2 = tp,X3 = −l,

X4 = btl + (1 + b)xp + q

b ∈ [0, 1] [X2, X4] = X2 Lb,4
4,20 X1 = q,X2 = p,X3 = xq,

X4 = (1 − b)tl + xp + (1 + b)yq

Lb,5
4,20 X1 = q,X2 = p,X3 = tp + xq,

X4 = (1 − b)tl + xp + (1 + b)yq

[X3, X4] = bX3 Lb,6
4,20 X1 = q,X2 = p,X3 = l + xq,

X4 = btl + xp + (1 + b)yq

[X2, X3] = X1 La,1
4,21 X1 = q,X2 = p,X3 = l + xq,

[X1, X4] = 2aX1 X4 = (at − x + b)l + (ax + t)p

+
(
2ay + 1

2 (t
2 − x2)

)
q

La
4,21 [X2, X4] = aX2 − X3 La,2

4,21 X1 = q,X2 = p,X3 = −tp + xq,

a � 0 [X3, X4] = X2 + aX3 X4 = (1 + t2)l + (a + t)xp +

(
2ay − x2

2

)
q

L1
4,22 X1 = p,X2 = tp,X3 = xp,X4 = −(1 + t2)l − txp

L4,22 [X1, X3] = X1 L2
4,22 X1 = l, X2 = p,X3 = t l + xp,X4 = xl − tp

[X1, X4] = −X2 L3
4,22 X1 = p,X2 = tp,X3 = xp + yq,

X4 = −(1 + t2)l − txp

[X2, X4] = X1 L4
4,22 X1 = l, X2 = p,X3 = t l + xp, X4 = xl − tp + q

L5
4,22 X1 = q,X2 = p,X3 = t l + xp + yq,

X4 = ctl − yp + xq
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Table 3. Classification of systems of two second-order odes admitting four-dimensional Lie algebras. l = ∂/∂t, p = ∂/∂x, q = ∂/∂y; , f, g, η, µ are
arbitrary functions.

Algebras Types Realizations Equations

L1
4,2 X1 = −t l − xp − yq,X2 = p,X3 = tp,X4 = yp ẍ = t−1f (y/t, ẏ), ÿ = 0

L2
4,2 X1 = −t l, X2 = l, X3 = p,X4 = q ẍ = ẋ2f (ẋ/ẏ), ÿ = ẋ2g(ẋ/ẏ)

L3
4,2 X1 = t l, X2 = tp,X3 = t l + xp,X4 = q ẍ = ẋẏf (t ẏ), ÿ = ẏ2g(tẏ)

L4
4,2 X1 = t l, X2 = tp,X3 = p,X4 = q t2ẍ = f (tẏ), t2ÿ = g(tẏ)

L5
4,2 X1 = −t l − xp,X2 = p,X3 = q,X4 = tp tẍ = f (tẏ), t2ÿ = g(tẏ)

L4,2 L6
4,2 X1 = −xp + µ(t)q,X2 = p,X3 = q,X4 = tq, µ̈ �= 0 ẍ = f (t)ẋ, ÿ = −µ̈(t) ln ẋ + g(t)

X1 = p,X2 = µ(t) exq,X3 = q,X4 = tq, µ �= 0 ẍ = −ẋ2 − 2µ̇

µ
ẋ − µ̈

µ
, ÿ = g(t, ẋ)

X1 = p,X2 = η(t) exp + µ(t) exq,X3 = q,X4 = tq, η �= 0 ẍ = ẋ2 +

(
η̇

η
+ ηf (t)

)
ẋ + f (t)η̇ − η̈

η
+
η̇2

η2

L7
4,2 ÿ = µ

η
ẋ2 +

(
2
µ̇

η
− µη̇

η2
+ µf (t)

)
ẋ

+

(
µ̈

η
− µη̈

η2
− 2

η̇µ̇

η2

)
ln(ηẋ + η̇) + g(t)

L1
4,3 X1 = −yq,X2 = q,X3 = −t l − xp,X4 = p tẍ = f (ẋ), ÿ = ẏg(ẋ)

L2
4,3 X1 = −xp − yq,X2 = q,X3 = xp,X4 = xq ẍ = xf (t, ẋ/x), ẋÿ = xẏf (t, ẋ/x)

L3
4,3 X1 = −xp − yq,X2 = q,X3 = −t l, X4 = −l xẍ = ẋ2f (ẋ/ẏ), xÿ = ẋ2g(ẋ/ẏ)

L4,3 L4
4,3 X1 = −t l − xp − yq,X2 = q,X3 = t l, X4 = tq t2xẍ = f (tẋ/x), t2xÿ = g(tẋ/x)

L5
4,3 X1 = xp,X2 = xq,X3 = −t l, X4 = l xẍ = ẋ2f (y − xẏ/ẋ), x2ÿ = (yf (y − xẏ/ẋ) + g(y − xẏ/ẋ))

L6
4,3 X1 = t l + xp − yq,X2 = q,X3 = t l, X4 = tp t2ẍ = (t ẋ − x)f (tẏ(t ẋ − x)), t ÿ = ẏg (t ẏ(t ẋ − x))

L7
4,3 X1 = −p − yq,X2 = q,X3 = t l, X4 = tp t2ẍ = f

(
t ẏe(t ẋ−x)

)
, t ÿ = ẏg

(
t ẏe(t ẋ−x)

)
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Table 3. Continued.

Algebras Types Realizations Equations

L1
4,4 X1 = p,X2 = q,X3 = yp,X4 = tp ẍ = f (t, ẏ), ÿ = 0

L2
4,4 X1 = l, X2 = p,X3 = xl,X4 = q ẍ = ẋ3f (ẋ/ẏ), ÿ = ẋ2ẏf (ẋ/ẏ) + ẏ2g(ẋ/ẏ)

L4,4 L3
4,4 X1 = p,X2 = q,X3 = l + yp,X4 = tp ẍ = f (ẏ) + tg(ẏ), ÿ = g(ẏ)

L4
4,4 X1 = p,X2 = q,X3 = yp + µ(t)q,X4 = tp, µ̈ �= 0 ẍ = µ̈

2µ̇2
ẏ2 + g(t)ẏ + f (t), ÿ = µ̈

µ̇
ẏ + g(t)

L1
4,5 X1 = p,X2 = tp,X3 = −l + xp + yq,X4 = yp ẍ = e−t f (yet , ẏ/y), ÿ = 0

L4,5 L2
4,5 X1 = p,X2 = q,X3 = t l + (x + y)p + yq,X4 = tp 2t ẍ = 2t2f (ẏ) − g(ẏ), t ÿ = g(ẏ)

L3
4,5 X1 = p,X2 = tp + et q, X3 = −l + xp,X4 = q ẍ = e−t f (ẏ + ẋet ), ÿ = g(ẏ + ẋet )

L4
4,5 X1 = l, X2 = p,X3 = (t + x)l + xp,X4 = q ẍ = ẋ3e−1/ẋf (ẏ/ẋe1/ẋ ),

ÿ = ẋ2ẏe−1/ẋf (ẏ/ẋe1/ẋ ) + ẋ2e−2/ẋg(ẏ/ẋe1/ẋ )

La,1
4,6 X1 = p,X2 = tp,X3 = (a − 1)tl + xp + yq,X4 = yp ẍ = y2a−1f (tya−1, ẏ/ya), ÿ = 0

La,2
4,6 X1 = p,X2 = q,X3 = t l + xp + ayq,X4 = tp tẍ = f (ta−1ẏ), ÿ = ta−2g(ta−1ẏ)

La
4,6 La,3

4,6 X1 = p,X2 = q,X3 = atl + xp + ayq,X4 = tq ẍ = t
1−2a
a f (t

a−1
a ẋ), t ÿ = g(t

a−1
a ẋ)

0 < |a| � 1 L1,4
4,6 X1 = l, X2 = p,X3 = t l + xp,X4 = q ẏẍ = f (ẋ), ÿ = ẏ2g(ẋ)

La,4
4,6, a �= 1 X1 = l, X2 = p,X3 = t l + axp,X4 = q ẍ = ẋ

a−2
a−1 f (ẋẏa−1), ÿ = ẋ

2
1−a g(ẋẏa−1)

La,5
4,6 X1 = p − t−1q,X2 = t−aq,X3 = t l + xp,X4 = tp tẍ = f (exp(−x/t + (1 − a)(ay + t ẏ))),

t2ÿ = (2 − a)(a − 1)(ln ẋ − x/t)

+g (exp(−x/t + (1 − a)(ay + t ẏ)))

L1
4,7 X1 = p,X2 = tp,X3 = −(1 + t)l − xp − yq,X4 = yp (1 + t)ẍ = f (y/(1 + t), ẏ), ÿ = 0

L4,7 L2
4,7 X1 = l, X2 = p,X3 = xl − tp,X4 = q ẍ = (1 + ẋ2)3/2f (ẏ2/(1 + ẍ2)),

ÿ = (1 + ẋ2)1/2ẋẏf ( ) + (1 + ẋ2)g( )
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Table 3. Continued.

Algebras Types Realizations Equations

L4,7 L3
4,7 X1 = p,X2 = q,X3 = l + yp − xq,X4 = p cos t − q sin t ẍ = −f (v cosϕ) sin(t + g(v cosϕ)) + v sin ϕ cos t,

ÿ = f ( ) cos(t + g( )) + v sin ϕ sin t
v = (ẋ2 + ẏ2)1/2, ϕ = t + arctan ẏ/ẋ

La
4,8 La,1

4,8 X1 = l, X2 = p,X3 = (at + x)l − (ax − t)p,X4 = q ẍ = (1 + ẋ2)3/2ea arctan ẋf

(
ẏ2

1 + ẋ2
e−2a arctan ẋ

)
,

a > 0 ÿ = (1 + ẋ2)1/2ẋẏea arctan ẋf ( ) + (1 + ẋ2) e2a arctan ẋ g( )

L1
4,9 X1 = l, X2 = t l + xp,X3 = −t2l − 2xtp + xq,X4 = q 2xẍ = ẋ2 + f

(
ẋ2

2
+ 2xẏ

)

L4,9 2x2ÿ = −ẋ

(
ẋ2

2
+ 2xẏ

)
− ẋf ( ) + g( )

L2
4,9 X1 = l + p,X2 = t l + xp,X3 = −t2l − x2p,X4 = q ẍ = − 2ẋ2

t − x
+

2ẋ

3ẏ2(t − x)3
+ ẏ3(t − x)2f

(
ẋ

ẏ2(t − x)2

)

ÿ = − 2

3ẏ(t − x)3
+ ẏ2g( )

L1
4,11 X1 = p,X2 = tp,X3 = yp,X4 = −l − tq ẍ = f (t2 − 2y, t − ẏ), ÿ = 0

L4,11 L2
4,11 X1 = p,X2 = q,X3 = − 1

2
p − tq,X4 = l + yp ẍ = ẏ + f (tẏ − ẋ) + tg(t ẏ − ẋ), ÿ = g(tẏ − ẋ)

L3
4,11 X1 = q,X2 = p, X3 = l, X4 = tp + xq ẍ = f (ẋ2 + 2ẏ), ÿ = ẋf (ẋ2 + 2ẏ) + g(ẋ2 + 2ẏ)

La,1
4,12, a �= 1 X1 = p,X2 = tp,X3 = yp, ẍ = e(a−2)ẏf (te(a−1)ẏ , t

1
a−1 ey/t ), ÿ = 0

X4 = (a − 1)tl + axp + ((a − 1)y − t)q

L1,1
4,12 X1 = p,X2 = tp,X3 = yp,X4 = xp − tq ẍ = e−ẏf (t, t ẏ − y), ÿ = 0

La
4,12, a �= 0 La,2

4,12 X1 = p,X2 = q,X3 = −tq,X4 = l + axp + yq ẍ = ẋf (ẋe−at ), ÿ = ẋ1/ag(ẋe−at )

La,3
4,12, a �= 1 X1 = l, X2 = p,X3 = q,X4 = atl + (x + y)p + yq ẍ = 1

a − 1
ẏ

1−2a
1−a ln ẏg(ẏ

1
a−1 eẋ/ẏ ) + ẏ

1−2a
1−a f ( ),

ÿ = ẏ
1−2a
1−a g( )
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Table 3. Continued.

Algebras Types Realizations Equations

La
4,12, a �= 0 L1,3

4,12 X1 = l, X2 = p,X3 = q,X4 = t l + (x + y)p + yq ẏẍ = e−ẋ/ẏ (ẏf (ẏ) + ẋg(ẏ)), ẍ = e−ẋ/ẏg(ẏ)

L1
4,13 X1 = p,X2 = tp,X3 = yp,X4 = t l + xp + (y − t)q ẍ = eẏf (tey/t , teẏ ), ÿ = 0

L4,13 L2
4,13 X1 = l, X2 = p,X3 = q,X4 = t l + yp ẏẍ = f (ẏeẋ/ẏ ) − 1

4 ẏ
4g(ẏeẋ/ẏ ), ÿ = ẏ2g(ẏeẋ/ẏ )

L3
4,13 X1 = p,X2 = q,X3 = cet p − tq, X4 = l + xp ẍ = et (f (cẏ + ẋe−t ) − cẏ), ÿ = g(cẏ + ẋe−t )

L1
4,14 X1 = p,X2 = tp,X3 = yp,X4 = −l + xp − tq ẍ = e−t f (t2 − 2y, (ẏ − 1) et ), ÿ = 0

L4,14 L2
4,14 X1 = q,X2 = p,X3 = l, X4 = t l + (t + x)p + (x + y)q ẍ = e−ẋf (ẋ2 − 2ẏ),

ÿ = ẋe−ẋf (ẋ2 − 2ẏ) + e−ẋ g(ẋ2 − 2ẏ)

L3
4,14 X1 = p,X2 = q,X3 = −t2

2
p − tq,X4 = l + (x + y)p + yq ẍ = ẏ + et

(
f (e−t (ẋ − t ẏ)) + tg(e−t (ẋ − t ẏ)

)
,

ÿ = et g(e−t (ẋ − t ẏ))

La,b,1
4,15 X1 = p,X2 = tp,X3 = yp,X4 = (1 − a)tl + xp + (1 − b)yq ẍ = t

2a−1
a−1 f (ty

a−1
1−b , t ẏ

a−1
a−b ), ÿ = 0

La,b
4,15 La,b,2

4,15 X1 = l, X2 = p,X3 = q,X4 = t l + axp + byq ẍ = ẋ
2−a
1−a f (ẋẏ

a−1
1−b ), ÿ = ẋ

2−b
1−a g(ẋẏ

a−1
1−b )

−1 � a < b < 1 La,b,3
4,15 X1 = p,X2 = q,X3 = tp,X4 = (1 − b)tl + xp + ayq ẍ = t

2b−1
1−b f (ẏt

a+b−1
b−1 ), ÿ = t

a+2b−2
1−b g(ẏt

a+b−1
b−1 )

ab �= 0 La,b,4
4,15 X1 = p,X2 = q,X3 = tq,X4 = (a − b)tl + xp + ayq ẍ = t

1−2a+2b
a−b f (ẋt

1+b−a
b−a ), ÿ = t

2b−a
a−b g(ẋt

1+b−a
b−a )

La,a,1
4,15 X1 = p,X2 = tp,X3 = yp,X4 = (1 − a)tl + xp + (1 − a)yq ẍ = t

2a−1
a−1 f (t/y, ẏ), ÿ = 0

La,a
4,15 La,a,2

4,15 X1 = l, X2 = p,X3 = q,X4 = t l + axp + ayq ẍ = ẋ
2−a
1−a f (ẋ/ẏ), ÿ = ẋ

2−a
1−a g(ẋ/ẏ)

−1 � a < 1 La,a,3
4,15 X1 = p,X2 = q,X3 = tp,X4 = (1 − a)tl + xp + ayq ẍ = ẏf (ẏt

1−2a
1−a ), ÿ = t

3a−2
1−a g(ẏt

1−2a
1−a )

a �= 0 La,a,4
4,15 X1 = p,X2 = q,X3 = tq,X4 = xp + ayq ẍ = f (t)ẋ, ÿ = g(t)ẋa
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Table 3. Continued.

Algebras Types Realizations Equations

La,1,1
4,15 X1 = p,X2 = tp,X3 = yp,X4 = (1 − a)tl + xp ẍ = t

2a−1
a−1 f (y, t ẏ), ÿ = 0

La,1
4,15 La,1,2

4,15 X1 = l, X2 = p,X3 = q,X4 = t l + axp + yq ẍ = ẋ
2−a
1−a f (ẏ), ÿ = ẋ

1
1−a g(ẏ)

−1 � a < 1 La,1,3
4,15 X1 = p,X2 = q,X3 = tp,X4 = xp + ayq ẍ = f (t)ẏ1/a, ÿ = g(t)ẏ

a �= 0 La,1,4
4,15 X1 = p,X2 = q,X3 = tq,X4 = (a − 1)tl + xp + ayq ẍ = t

2a−3
1−a f (ẋt

a−2
a−1 ), ÿ = t

a−2
1−a g(ẋt

a−2
a−1 )

La,b,1
4,17 X1 = p,X2 = tp,X3 = yp, ẍ = (1 + ẏ2) e(a−2b) arctan ẏ

X4 = ((a − b)t + y)l + axp + ((a − b)y − t)q f ((t2 + y2)1/2e(a−b) arctan y/t , (t + yẏ)/(y − t ẏ)), ÿ = 0

La,b
4,17 La,b,2

4,17 X1 = q,X2 = p,X3 = l, ẍ = (1 + ẋ)3/2e−b arctan ẋf (ẏ(1 + ẋ2)−1/2e(a−b) arctan ẋ ),

a �= 0, b � 0 X4 = (bt − x)l + (bx + t)p + ayq ÿ = ẋẏ(1 + ẋ2)1/2e(a−b) arctan ẋf ( ) + (1 + ẋ2) e(2a−b) arctan ẋ g( )

La,b,3
4,17 X1 = p,X2 = q,X3 = −tq,X4 = l + axp + (b + t)yq ẍ = − 2t ẋ

1 + t2
+

e−2a arctan t

(1 + t2)2
f (ẋ(1 + t2) e−a arctan t ),

ÿ = (1 + t2)−3/2eb arctan t g( )

L1
4,18 X1 = 2p,X2 = 2tp,X3 = −l, X4 = t l + (2x − t2)p ẍ = 2 ln ẏ + f (y), ÿ = g(y)ẏ2

L4,18 L2
4,18 X1 = 2p,X2 = 2tp,X3 = −l, X4 = t l + (2x − t2)p + q ẍ = −2y + f (ey ẏ), ÿ = ẏ2g(ey ẏ)

L3
4,18 X1 = 2q,X2 = p,X3 = l + 2xq, ẍ = e−ẋf (e−ẋ (t ẋ − ẏ/2)), ÿ = 2ẋ + e−ẋ g(e−ẋ (t ẋ − ẏ/2))

X4 = t l + (t + x)p + (2y + t2)q

L4
4,18 X1 = q,X2 = p,X3 = −tp + xq,X4 = l + xp + 2yq ẍ = et f (e−2t (ẋ2 + 2ẏ)),

ÿ = −ẋet f (e−2t (ẋ2 + 2ẏ))(ẋ2 + 2ẏ)g(e−2t (ẋ2 + 2ẏ))
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Table 3. Continued.

Algebras Types Realizations Equations

L1
4,19 X1 = q,X2 = p,X3 = xq,X4 = xp + tq ẍ = f (t)ẋ, ÿ = f (t)(ẏ − ln ẋ) + g(t)

L2
4,19 X1 = p,X2 = tp,X3 = −l, X4 = −t l ẍ = f (y)ẏ2, ÿ = g(y)ẏ2

L3
4,19 X1 = p,X2 = tp,X3 = −l, X4 = −t l + yp ẍ = f (y)ẏ2 + g(y)ẏ2 ln ẏ, ÿ = g(y)ẏ2

L4,19 L4
4,19 X1 = p,X2 = tp,X3 = −l, X4 = −t l + q ẍ = ẏ2f (ẏe−y), ÿ = ẏ2g(ẏe−y)

L5
4,19 X1 = q,X2 = p,X3 = xq,X4 = 2t l + xp ẍ = t−3/2f (tẋ2), ẋÿ = ẏt−3/2f (tẋ2) + ẋt−2g(tẋ2)

L6
4,19 X1 = q,X2 = p,X3 = tp + xq,X4 = 2t l + xp ẍ = t−3/2f (t (ẋ2 + 2ẏ)), ÿ = t−3/2ẋf (t (ẋ2 + 2ẏ)) + t−2g(t (ẋ2 + 2ẏ))

L7
4,19 X1 = q,X2 = p,X3 = l + xq,X4 = −t l + xp ẍ = ẋ3/2f

(
t ẋ − ẏ

ẋ1/2

)
, ÿ = t ẋ3/2f

(
t ẋ − ẏ

ẋ1/2

)
+ ẋg

(
t ẋ − ẏ

ẋ1/2

)

Lb,1
4,20, b �= 0X1 = q,X2 = p,X3 = xq,X4 = xp + (1 + b)yq ẍ = f (t)ẋ, ÿ = f (t)ẏ + g(t)ẋ(1+b)

Lb,2
4,20, b �= 0X1 = p,X2 = tp,X3 = −l, X4 = btl + (1 + b)xp ẍ = f (y)ẏ

b−1
b , ÿ = g(y)ẏ2

L0,2
4,20 X1 = p,X2 = tp,X3 = −l, X4 = xp ẍ = 0, ÿ = g(y, ẏ)

Lb,3
4,20 X1 = p,X2 = tp,X3 = −l, X4 = btl + (1 + b)xp + q ẍ = e(1−b)yf (ẏeby), ÿ = ẏ2g(ẏeby)

Lb
4,20 Lb,4

4,20 X1 = q,X2 = p,X3 = xq,X4 = (1 − b)tl + xp + (1 + b)yq ẍ = t
2b−1
1−b f (ẋt

b
b−1 )

0 � |b| < 1 ẋÿ = ẏt
2b−1
1−b f ( ) + ẋt

3b−1
1−b g( )

Lb,5
4,20 X1 = q,X2 = p,X3 = tp + xq,X4 = (1 − b)tl + xp + (1 + b)yqẍ = t

2b−1
1−b f (t

2b
b−1 (ẋ2 + 2ẏ))

ÿ = ẋt
2b−1
1−b f ( ) + t

3b−1
1−b g( )

Lb,6
4,20 X1 = q,X2 = p,X3 = l + xq,X4 = btl + xp + (1 + b)yq ẍ = ẋ

1−2b
1−b f (ẋ

1
b−1 (t ẋ − ẏ))

ÿ = t ẋ
1−2b
1−b f ( ) + ẋg( )
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Table 3. Continued.

Algebras Types Realizations Equations

L1,1
4,20 X1 = q,X2 = p,X3 = xq,X4 = xp + 2yq ẍ = f (t)ẋ, ÿ = f (t)ẏ + g(t)ẋ2

L1,2
4,20 X1 = p,X2 = tp,X3 = −l, X4 = t l + 2xp ẍ = f (y), ÿ = g(y)ẏ2

L1,3
4,20 X1 = p,X2 = tp,X3 = −l, X4 = t l + 2xp + q ẍ = f (ẏey), ÿ = ẏ2g(ẏey)

L1
4,20 L1,4

4,20 X1 = q,X2 = p,X3 = tp + xq,X4 = xp + 2yq ẍ = f (t)(ẋ2 + 2ẏ)1/2, ÿ = ẋ(ẋ2 + 2ẏ)1/2f (t) + (ẋ2 + 2ẏ)g(t)

L1,5
4,20 X1 = q,X2 = p,X3 = l + xq,X4 = t l + xp + 2yq ẍ = f (ẋ)

t ẋ − ẏ
, ÿ = tf (ẋ)

t ẋ − ẏ
+ g(ẋ)

La,1
4,21 X1 = q,X2 = p,X3 = l + xp, ẍ = (1 + ẋ2)−3/2e−a arctan ẋf

(
t ẋ − ẏ + b

(1 + ẋ2)1/2
e−a arctan ẋ

)

X4 = (at − x + b)l + (ax + t)p +
(
2ay + 1

2 (t
2 − x2)

)
q ÿ = ẋ + (t + ẋẏ − bẋ)(1 + ẋ2)1/2e−a arctan ẋf ( ) + (1 + ẋ2)g( )

La
4,21 La,2

4,21 X1 = q,X2 = p,X3 = −tp + xq, ẍ = (1 + t2)−3/2ea arctan t f ((1 + t2)(ẋ2 + 2ẏ))

a � 0 X4 = (1 + t2)l + (t + a)xp + (2ay − x2/2)q ÿ = −ẋ(1 + t2) ea arctan t f ( ) + (1 + ẋ2)−2g( )

−t (1 + t2)−1(ẋ2 + 2ẏ)

L1
4,22 X1 = p,X2 = tp,X3 = xp,X4 = −(1 + t2)l − txp ẍ = 0, ÿ = −2(1 + t2)−1ẏ2 + (1 + t2)−2g(y, (1 + t2)ẏ)

L2
4,22 X1 = l, X2 = p,X3 = t l + xp,X4 = xl − tp ẍ = (1 + ẋ2)ẏf (y), ÿ = (f (y)ẋ + g(y))ẏ2

L4,22 L3
4,22 X1 = p,X2 = tp,X3 = xp + yq,X4 = −(1 + t2)l − txp ẍ = y(1 + t2)−3/2f ((1 + t2)−1y/ẏ),

ÿ = −2t ẏ/y + (1 + t2)−2g((1 + t2)−1y/ẏ)

L4
4,22 X1 = l, X2 = p,X3 = t l + xp,X4 = xl − tp + q ẍ = (1 + ẋ2)ẏf (y + arctan ẋ),

ÿ = (ẋf (y + arctan ẋ) + g(y + arctan ẋ)) ẏ2

L5
4,22 X1 = q,X2 = p,X3 = t l + xp + yq,X4 = ctl − yp + xq tẍ = ẋf (v) + ẏg(v), t ÿ = ẏf (v) − ẋg(v),

v = ec arctan(ẏ/ẋ)
√
ẋ2 + ẏ2
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